
CHAPTER 12

STELLAR ENGINES AND THE CONTROLLED
MOVEMENT OF THE SUN

VIOREL BADESCU1 AND RICHARD BROOK CATHCART2

1 Candida Oancea Institute, Polytechnic University of Bucharest, Spl. Independentei 313, Bucharest
79590, Romania;
2 Geographos, 1300 West Olive Avenue, Burbank, CA 91506, USA

Abstract: A stellar engine is defined in this chapter as a device that uses the resources of a star to
generate work. Stellar engines belong to class A and B when they use the impulse and
the energy of star’s radiation, respectively. Class C stellar engines are combinations of
types A and B. Minimum and optimum radii were identified for class C stellar engines.
When the Sun is considered, the optimum radius is around 450 millions km. Class A and
C stellar engines provide almost the same thrust force. A simple dynamic model for solar
motion in the Galaxy is developed. It takes into account the (perturbation) thrust force
provided by a stellar engine, which is superposed on the usual gravitational forces. Two
different Galaxy gravitational potential models were used to describe solar motion. The
results obtained in both cases are in reasonably good agreement. Three simple strategies
of changing the solar trajectory are considered. For a single Sun revolution the maximum
deviation from the usual orbit is of the order of 35 to 40 pc. Thus, stellar engines of the
kind envisaged here may be used to control to a certain extent the Sun movement in the
Galaxy

Keywords: stellar engine, Kardashev type II civilization, Shkadov thruster, Dyson sphere, galaxy
gravitational potential, Sun movement control strategy

1. INTRODUCTION

For various reasons, mankind may be faced in the future with the problem of
changing the Sun revolution motion. Avoiding nearby supernovae or ordinary star
collisions are examples. Diffuse matter clouds could also be a potential danger.
Some studies suggest that during its lifetime the Sun has suffered about ten
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encounters with major molecular clouds (MMC) and it has had close (impact param-
eter less than 20 pc) encounters with more than 60 MMC of various masses (Clube
and Napier, 1984; Napier, 1985). These events induce perturbations of the Oort
comet cloud, known to be sensitive to the particular galactic orbit of the Sun,
leading to possible comet impacts on Earth (Gonzalez, 1999).

The Sun will steadily leave the main sequence in a few billion years, as stellar
evolution calculations show (see e.g. Sackmann et al., 1993). The consequences
will be a “moist greenhouse” effect on Earth, which will likely spell a definite
end to life on our planet well before the Sun will become a Red Giant (Kasting,
1988; Nakajima et al., 1992). A preliminary solution to preserve the present-day
climate on Earth may be to change its orbit. This subject is treated in detail in
literature (see, e.g. Korykansky et al., 2001; McInnes, 2002) and in Chapter 11 of
this book.

Zuckerman (1985) estimates that if ancient extraterrestrial civilizations exist in
the Galaxy, then between 0.01 and 0.1 of them would have been forced to vacate
their native planet due to the primary star leaving the main sequence. Problems
with feasibility and dynamics of mass interstellar migrations (Jones, 1981; Newman
and Sagan, 1981) prompted some researchers to propose the so-called “interstellar
transfer” (or “solar exchange”) solution (Hills, 1984; Shkadov, 1987; Fogg, 1989).
In this case the Earth (or, more generally, the home planet) is to be transformed
into a planet of a different star. The interstellar transfer requires first of all a way
of controlling Sun (or star) movement in the Galaxy.

In this chapter we study the amplitude of a possible human intervention on Sun
revolution motion. In section 2 we give a brief overview of different proposals in
the literature. Also, we define the concept of stellar engine and we give details
about various stellar engine classes. In section 3 we give the background physics
associated to these devices. In section 4 we develop a model for the motion of
the Sun in the Galaxy, based on usual Newtonian dynamics. The details of Sun
movement are complex but an “average” motion can be defined by using appropriate
global Galaxy gravitational potentials. The movement is then studied in both the
normal (unperturbed) case and in the perturbed case, when an additional (stellar
engine) thrust force is acting on the Sun. To increase the confidence in results, two
different global gravitational potentials are used. Finally, in the Conclusion section
we summarize the main findings of our work.

2. PROPOSALS TO CHANGE SUN MOTION

In his 12 May 1948 Halley Lecture at Oxford University in the UK, Fritz Zwicky
(1889–1974) (see Zwicky, 1957) announced the possibility of

“! ! ! accelerating ! ! ! (the Sun) to higher speeds, for instance 1000 km/s directed toward Alpha Centauri
A in whose neighborhood our descendents then might arrive a thousand years hence. [Such a one-way
trip] ! ! ! could be realized through the action of nuclear fusion jets, using the matter constituting the Sun
and the planets as nuclear propellants”.
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Zwicky’s Halley Lecture, which may be seen as a response to the 16 July 1945
first nuclear fission explosion in the USA, was published in The Observatory
(68:121–143, 1948) where the author merely hinted at the technical possibilities.
At that time lasers were yet to be invented—circa 1960—and the controlled move-
ment of asteroids and planets was still to be scientifically theorized (Korykansky,
2004). However, during 1971 when SCIART, a blend of “Science” and “Art”,
was organized by Bern Porter (1911–2004) even artists started to advocate use of
nuclear particle beams for peaceful projects. By 1992, the artist Francisco Infante
voiced his desire that humans redesign the firmament by intentionally shifting the
positions of the stars other than the Sun (Infante, 1992).

Thefirst scientifically recordedevidenceofanaturalcelestialbodyinspacecolliding
with the Sun came on 30-31 August 1979 when a cometary nucleus (1979 XI: Howard-
Koomen-Michels) was observed as it vaporized in the Sun’s corona.

At the Conference on Interstellar Migration (held at Los Alamos, New Mexico, in
May 1983), David Russell Criswell extrapolated from available astronomical facts
that the Sun might never enter a Red Giant-stage because it will be transformed
into a stable White Dwarf-stage star via anthropogenic “star lifting”. Criswell
speculated about, perhaps proposed, a nameless macro-project the goal of which
was to annually remove 6!5 ·1018 tons of solar plasma from the Sun for a period of
∼300 million years—about 2% of the Milky Way Galaxy’s estimated age—setting
aside the evicted plasma to cool by storing it near the Sun’s poles in a stable form.
He foresaw this macro-engineering activity commencing circa AD 2170–5650.
Criswell’s polar solar plasma lifts would be controlled and sustained versions of
the Sun’s natural coronal mass ejections, which occur most everywhere on that
glowing celestial body’s turbulent surface. Criswell’s technique could be adapted
to spin-up the Sun, thus causing a mixing of its materials artificially. However,
a too rapid equatorial rotation could force the Sun to become dangerously unstable.
Criswell did not mention moving stars in his work. His stellar husbandry and star
lifting concepts essentially involved mining stars in order to divide their mass into
smaller units so as to greatly extend their main sequence lifetime and the efficiency
with which their radiant energy could be utilised. It was Fogg (1989) who adapted
star lifting to moving stars by accelerating mass from just one stellar pole rather
than both.

Oliver Knill, in 1997, suggested deliberate triggering of asymmetric fusion and
fission in the Sun might be utilized to move the Sun and its cortege of planets
(Knill, 2003). He referred to solar flares, both natural and man-made, as “rockets on
the Sun”. He alleged that if all the Sun’s wind were focused in only one direction
instead of being emitted globally, then the Sun might, in principle, be accelerated
to a speed of 100 m/s in a year’s time. Since such total harnessing of the Sun
is unlikely, Knill offered that giant solar flares might be induced which would
have the effect of propelling the Sun in a selected direction through space. His
technical preference was to trigger huge artificial solar flares at one of the Sun’s
poles that perform as rocket motors, lest the induced anthropogenic solar wind cause
Earth serious problems of human health or civilization’s infrastructure breakdowns.
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Of course, this limits the trajectory of the Sun to flight courses that may not be
what human civilization most wants or needs. Like Fritz Zwicky, Knill opted for
the use of nuclear particle beams as a tool of rocket motor ignition.

Zwicky, Knill and Criswell, therefore, have proposed very advanced tele-mining
macro-projects that can have the planned effect of moving the Sun in some desired
direction (Fogg, 1989).

Another way of controlling the Sun’s movement is based on the concept of stellar
engine. A stellar engine was defined in Badescu and Cathcart (2000) as a device
that uses a significant part of a star’s resources to generate work. Three types of
stellar engines were identified and denoted as class A, B and C, respectively.

A class A stellar engine uses the impulse of the radiation emitted by a star
to produce a thrust force. When acting through a finite distance the thrust force
generates work. As example of class A stellar engine we refer to the Sun thruster
proposed in Shkadov (1987), which consists of a mirror placed at some distance
from the Sun (Fig. 1a). The mirror is situated such that the central symmetry of the
solar radiation in the combined mirror-Sun system is violated and, as a consequence,
a certain thrust force will arise. For a mirror of given surface mass density a balance
exists between the gravitational force and the force due to solar radiation pressure
at a certain mirror-Sun distance which remains constant. It may be shown that the
equilibrium does not depend on the distance between mirror and the Sun, since
both the gravitational force and the force of the solar light pressure per unit mirror
surface are inversely proportional to the square of the radius. A mirror with given
geometry located at 150 million km from the Sun requires a surface mass density of
about 1!55 ·10−3 kg/m2 while its total mass amounts 1019 −1020 kg (which may be
compared with the mass of the Earth, which is 5!977 ·1024 kg". Detailed calculations
may be found in Shkadov (1987).

A class B stellar engine uses the energy flux of the radiation emitted by a star
to generate mechanical power. An example of class B stellar engine was proposed
in Badescu (1995). It consists of two concentric spherical “shells” centered on the
star. The “shells” have not necessarily continuous boundaries but they could be as
well as imaginary envelopes of a very large number of smaller 3D bodies englobing
the star. The inner surface acts as a solar energy collector. The outer surface is a
thermal radiator. The two surfaces have different but rather uniformly distributed
temperatures, Tp and Tr , respectively. The existing difference of temperature Tp −Tr

determines a heat flux from the inner towards the outer surface. This flux entering
the thermal engine is used for power generation.

AclassCstellarenginewasdefined inBadescuandCathcart (2000)asacombination
of a class A and class B stellar engine (Fig. 1b). It uses the impulse and the energy of
the star radiation to provide both a thrust force and mechanical power for its owning
civilization. Note that class B and C stellar engines are normally built by using the
material of the inner planets (see Section 2.2). Of course, in this case the entire human
population has to leave the Earth and move on the stellar engine.

For completeness here we define a new stellar engine as follows. A class D stellar
engine uses a star’s mass to propel the star. A particular class D stellar engine is
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Figure 1. (a). A class A stellar engine (Shkadov thruster). r – distance between star S and the mirror.
! – mirror rim angle. (b). The class C stellar engine proposed in Badescu and Cathcart (2000).
Rp – distance between star and inner surface, h – distance between inner and outer surfaces, TS – star
temperature; Tp, Tr – temperatures of the inner and outer surfaces, respectively

the stellar rocket described in Fogg (1989), based on a modification of the concept
of “star lifting” proposed in Criswell (1985).

3. THERMODYNAMICS OF STELLAR ENGINES

3.1 Class A Stellar Engines

The energy radiated by a star is due to the nuclear reactions taking place in the
nucleus. A steady-state star is characterized by a permanent balance between the
energy flux generated during the nuclear reactions and the energy flux emitted at
star’s surface in all directions.

The bolometric luminosity L̃S of the Sun (i.e. its energy radiated on all wave-
lengths per unit time) is in present times (Ureche, 1987, p. 102):

(1) L̃S = 3"826 ·1026 W"

Let us consider the class A stellar engine of Fig. 1a. The star is prevented from
losing energy on the solid angle covered by the mirror, as the energy emitted on
that direction is returned to the star together with the reflected radiation. As the
nuclear reaction rate doesn’t change, the same energy flux L̃S has to be dissipated in
space but this time from the effective (not covered by the mirror) star surface only.
Consequently, the photosphere temperature will increase and it is expected that the
star will change gradually to a different steady state. This effect was neglected in
Shkadov (1987).

One denotes by RS and T̃S the Sun’s ray and its present-day temperature, respec-
tively. The area of the Sun surface (SS) and the surface of the Sun covered by the
mirror (SS#covered) are, respectively (Fig. 1a)

SS = 4$R2
S(2)

SS#covered = 2$RSh(3)
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Here h can be easily computed as a function of the mirror rim angle !

(4) h = RS"1− cos !#$

The effective (not covered by the mirror) Sun surface area, SS%eff , is:

(5) SS%eff = SS −SS%covered$

One supposes the Sun is a blackbody, both before and after mirror installation.
Then the steady-state Sun temperature after mirror installation (TS) has to obey the
following energy balance equation:

(6) L̃S = SS&T̃ 4
S = SS%eff &T 4

S $

By using Eqs. (5) and (6) one obtains

(7) TS = T̃S(
1−SS%covered/SS

)1/4 $

Using Eqs. (2)–(4) and Eq. (7) allows us to obtain the dependence of the Sun’s
temperature TS on the mirror rim angle ! . Results are shown in Fig. 2. By increasing
the mirror’s rim angle the spectral class of the Sun gradually changes from G2
towards F2 (Harvard classification).

The increase in the Sun’s photosphere temperature is accompanied by a change
in its present absolute bolometric magnitude M̃b. This change is governed by the
equation (see Eq. (5.23) in Ureche, 1987, p. 109):

(8) Mb = M̃b −10 lg
(

TS

T̃S

)
$

Figure 2. Dependence of Sun’s photosphere temperature Ts and absolute magnitude Mb on the mirror rim
angle ! (see Fig. 1a). The relation between temperature and star spectral classes (Harvard classification)
is also shown
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Figure 2 shows the dependence of the absolute bolometric magnitude of the Sun,
Mb, as a function of mirror rim angle ! . We have taken into account that the Sun’s
present absolute bolometric magnitude is M̃b = 4"7.

One can see that for the rim angle considered by Shkadov (1987) in his calcu-
lations (i.e. ! = 30!) both the photosphere temperature TS (and its associated
spectral class) and the absolute bolometric magnitude Mb remains quite close to the
present-day values.

The mass of the mirror is distributed over a very large surface and, as a conse-
quence, its influence on the orbit of the Earth is expected to be small. However,
the Earth temperature may be affected in case of mirrors with large rim angle.
Therefore, the mirror should be placed and kept in such a position that the orbit and
temperature of the Earth are not affected significantly (for example, the mirror-Sun
direction may be kept perpendicular on Earth orbit).

3.2 The Dyson Sphere Revisited

In this section we shall consider a ‘usual’ thin Dyson sphere (DS) englobing the
Sun (Dyson, 1966). The inner DS surface constitutes the habitat of mankind. Due
to its symmetry, the Dyson sphere will have a rather uniform surface temperature.
The DS material is assumed to have a good thermal conductivity. Consequently,
one could neglect the thermal gradients on material’s thickness.

The steady-state energy balance per unit DS area is:

(9) a
BS

#
$T 4

S +a%1− BS

#
&eint$T 4

p = %eint + eext&$T 4
p "

Here a is the absorptance of DS inner surface while eint and eext is the emittance
of DS inner and outer surfaces, respectively. Also, TS and Tp is Sun and DS
temperature, respectively. The first term in the l.h.s. of Eq. (9) is the energy flux
density absorbed from the Sun while the second term is the energy flux density
absorbed from the whole Dyson sphere. The r.h.s. of Eq. (9) contains the energy
flux densities emitted by the DS inner and outer surfaces, respectively.

The geometric factor BS in Eq. (9) may be computed as in Landsberg and Badescu
(1998):

(10) BS =
'∫

0

cos ( sin (d(

2#∫

0

d) = # sin2 '*

where ' is the half-angle of the cone subtended by the Sun when viewed from an
arbitrary point placed on DS inner surface. One can simply prove that

(11) sin2 ' =
(

RS

Rp

)2

*
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where RS and Rp are Sun and DS radii, respectively. One denotes:

(12) x ≡ BS

!
=
(

RS

Rp

)2

"

The steady-state energy balance for the Sun’s surface is:

(13) 4!R2
S#T 4

S −4!R2
peint#T 4

p = L̃S"

The first term in the r.h.s. of Eq. (13) is the energy flux emitted by the whole surface
of the Sun while the second term is the energy flux received by the whole surface of
the Sun from the Dyson’s sphere. If one takes into account, on one hand, the
multiple reflections of solar radiation on DS inner surface, and, on the other hand,
the DS symmetry, one concludes that the absorptance a ≈ 1. This is only true if one
neglects that part of the radiation reflected by DS inner surface which is incident on
the Sun’s surface. By solving the Eqs. (9) and (13) and taking into account Eq. (12)
one obtains:

Tp =
(

L̃S

4!R2
p#eext

)1/4

(14)

TS =
[(

1+x
eint

eext

)
L̃S

4!R2
S#

]1/4

"(15)

These relations are valid under the condition TS > Tp, which may be re-written (by
using Eqs. 12, 14 and 15) as:

(16) Rp ≥
(

1− eint

eext

)1/2

RS"

Figure 3 of Badescu and Cathcart (2000) shows the dependence of DS temperature
Tp on the radius for various values of DS surface emittance e = eint = eext.
A surface temperature comparable with present-day average ground surface temper-
ature (∼300 K) corresponds to high values of surface emittance. A number of
conclusions may be drawn. First, small radii increase the feasibility of a DS project
as the amount of material required is proportional to R2

p. Second, the inner planets
seem to be the best source of material in this case due to the shorter distance between
their orbit and the place of the future Dyson sphere. The material of the inner planets
has a relatively low albedo (between 0.07 in case of Mercury and 0.39 in Earth case
(Moore, 1970); Venus’ high albedo is due to its cloudy atmosphere). Normally, low
albedo values are associated to surfaces with high absorptance (or, which equiva-
lent due to Kirchoff’s law, to surfaces with high emittance). Therefore, the inner
planets are appropriate for DS building also from the point of view of their optical
properties.
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3.3 Class B and Class C Stellar Engines

Due to mirror’s imperfect reflection and to the finite size of the Sun, a spot of
concentrated light is expected to appear on the inner surface of class B and class C
stellar engines in its part opposite to the mirror. This spot is associated with a
temperature peak and can be used to increase locally the work rate provided by
the thermal engine. However, for convenience we shall assume: (i) the Sun has a
negligible size as compared to the radius of the stellar engine and (ii) the mirror is
perfect (i.e. the mirror has a unity reflectance and it reflects all the incident rays on
Sun’s direction). As a consequence, the mirror temperature is very low and is not
considered in this work.

Now, we shall analyze a region on the inner surface of the class B stellar engine
(or on that part of the class C stellar engine that is used for power generation). The
steady-state energy balance per unit area of the inner surface is:

(17) qH = BS

!
" T 4

S +
(

1− BS

!

)
eint" T 4

p − eint" T 4
p #

Here, qH is the energy density flux entering the thermal engine (Fig. 3). The first
and the second terms in the r.h.s of Eq. (17) is the energy flux density absorbed
from the Sun and from the whole stellar engine inner surface, respectively. Here,
the conservation of the etendue on the mirror surface is taken into account (see e.g.
Badescu, 1993, and references therein). The third term in the r.h.s of Eq. (17) is
the energy flux density emitted by the stellar engine’s inner surface.

The energy balance per unit area of the outer surface is:

(18) qL = eext" T 4
r #

In Eq. (18) qL is the energy flux density leaving the thermal engine per unit surface
area while Tr is the temperature of the outer surface of the stellar engine.

Here a particular case of endoreversible thermal engine is considered, namely the
Chambadal-Novikov-Curzon-Ahlborn engine (CNCA engine for short). It consists
of three parts (Fig. 3):

(a) a reversible part working between two heat reservoirs (one at the high temper-
ature), say t1, and one at the low temperature, say t2; (usually, t1 and t2 are the
temperatures of the working fluid during its isothermal expansion and compression,
respectively).

(b) two irreversible parts containing temperature drops (i.e. the temperature fall
Tp − t1 accompanying qH and the temperature fall t2 −Tr accompanying qL). A linear
relationship exists between the heat flows and the temperature gradients.

Details on endoreversible and CNCA engines may be found in the reviews by
Bejan (1996) and Hoffmann et al., (1997).

The entropy balance for the CNCA engine is (De Vos, 1985):

(19)
qH

T 1/2
p

+ qL

T 1/2
r

= 0#
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Figure 3. Power generation by using a CNCA thermal engine. qH! qL – heat fluxes entering and leaving
the thermal engine, respectively; t1 and t2 – the absolute temperatures of the working fluid in contact
with the two heat reservoirs. Tp! Tr – temperatures of the inner and outer surfaces, respectively; w –
work rate (power)

The energy balance for the whole surface of the Sun is:

(20) SS!eff "T 4
S −SSeint"T 4

p = L̃S#

The first term in the l.h.s. of Eq. (20) is the energy flux lost by the Sun; it takes
into consideration that all the energy emitted by the Sun on mirror’s direction is
reflected back. The second term in the l.h.s. of Eq. (20) is the energy flux received
by the Sun from the inner surface of the stellar engine. It takes into account that,
due to the perfect mirror, each unit surface area of the Sun receives the energy flux
density eint"T 4

p .
Simple computation shows that:

(21) SS!eff = SS

1+ cos $

2
#

One uses the following notation:

(22) %S ≡ TS

T̃S

%p ≡ Tp

T̃S

%r ≡ Tr

T̃S

#

In the following %p is supposed to be known. This is a reasonable assumption as
normally Tp should allow living conditions and consequently has a small variation
range. By using Eqs. (12) and (17)–(22) one derives:

%S =
(

eint%
4
p + 2

1+ cos $

)1/4

(23)

%r =
(

2
1+ cos $

x

eext

1

%1/2
p

)1/4

#(24)
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The two following conditions have to be fulfilled: !S > !p and !p > !r , in order
for the thermal engine to operate (i.e. to generate a positive power). By using
Eqs. (22)–(24) these conditions turn out to be:

eint ≥ 1− 2
!4

p "1+ cos #$
(25)

Rp ≥ RS

[
2

eext!4
p "1+ cos #$

]1/2

%(26)

The constraint Eq. (25) is always fulfilled as its r.h.s. member is non-negative,
because !p < 1 (see Eq. 22) and cos # ≤ 1. On the other hand, Eq. (26) gives a
minimum limit for the radius of the stellar engine.

Let us have a look to the class B stellar engine proposed in Badescu (1995).
It may be seen as a particular case of class C stellar engine (it corresponds to
a missing mirror or, in other words, to # = 0$$. For an outer surface emittance
eext = 1 one finds the minimum radius Rp&min = RS/!2

p. This is very close to the result
Rp&min = RS"1 − !4

p$
1/2/!2

p derived in Badescu (1995) without taking into account
that the presence of the stellar engine increases the Sun’s temperature.

Figure 5 of Badescu and Cathcart (2000) shows the dependence of the Sun
temperature TS on the mirror rim angle # and the radius Rp of the stellar engine.
Generally, TS increases with increasing # and the radius Rp. However, this applies
mainly for Rs < 400 ·106 km.

Figure 4a shows the dependence of the outer surface temperature Tr on # and Rp.
Generally, Tr decreases by increasing Rp and decreasing the mirror rim angle # .

Knowledge of the temperature Tr is important in case of searching for extraterres-
trial intelligence (SETI). Indeed, it is (practically) the only information that outside
world receives from a Kardashev type II civilisation. One reminds that according to
the classification proposed by Kardashev a technological civilisation is of type I, II
or III if it has under its control the materials and energy resources of a planet, star,
or galaxy, respectively (see Kardashev, 1964; Badescu and Cathcart, 2000). From
Fig. 4a one learns that galactic IR sources corresponding to temperatures lower
than 300 K should not be overlooked during SETI activities. For more information
about the thermal signature of possible extraterrestrial civilizations in the Galactic
context see Chapter 13 in this book.

The heat flux density qH is obtained by using Eqs. (12), (17), (22)–(24):

(27) qH = x'T̃ 4
S

2
1+ cos #

%

The well-known CNCA efficiency is (De Vos, 1985)

(28) (CNCA = 1−
(

Tr

Tp

)1/2

= 1−
(

!r

!p

)1/2

%
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Figure 4. Dependence of various quantities on mirror rim angle ! and radius Rp in case of a class C
stellar engine. (a) Outer surface temperature Tr (K); (b) Thermal engine efficiency "CNCA; (c). Power
density wCNCA #W/m2$; (d) Optimum inner surface temperature Tp (K). In cases (a), (b), (c) the
temperature of the inner surface is Tp = 300 K and the emittance of both inner and outer surfaces is
eint = eext = 0%8. In case (d) eint = eext = 1

Figure 4b show the dependence of &CNCA on ! and Rp. This performance indicator
increases by increasing the radius Rp and decreasing the mirror rim angle ! . One
can see that the efficiency vanishes and tends to become negative for Rp values
smaller than the limit predicted by Eq. (26) (see the top left corner of Fig. 4b,
where the associated “critical” rim angle may be easily evaluated). Generally,
&CNCA is smaller than the efficiency (which may exceed 0.5) of common terrestrial
power plants working at large temperature differences but it is comparable with the
efficiency of Stirling engines working at small differences of temperature (tens of
Kelvin)(see Badescu, 2004).

Figure 8 of Badescu and Cathcart (2000) shows the dependence of &CNCA on the
outer surface emittance eext. The efficiency increases by increasing eext. This can
be explained as follows. Increasing the emittance eext makes the temperature Tr

decrease (see Fig. 5) and this finally leads to an increase in the efficiency. This has
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Figure 5. Dependence of the power density wCNCA and of the outer surface temperature Tr on the outer
surface emittance eext in case of a class C stellar engine. Rp = 300 millions km and ! = 30 degrees.
Other inputs as in Fig. 4a

again consequences for SETI activities. Indeed, the thermal signature of possible
extraterrestrial civilizations may be at a lower level than commonly expected.

The work rate (power) density wCNCA is given by:

(29) wCNCA = qH"CNCA#

Figure 4c shows that for small Rp values the power density wCNCA decreases by
increasing the mirror rim angle ! . However, at high Rp values the reverse happens.
There is a maximum maximorum power density which corresponds in both cases
to a Rp radius of about 450 · 106 km. This means that there is an optimum stellar
engine radius. That optimum radius is obviously larger than the radius of commonly
proposed Dyson spheres, which is of the order or Earth orbit radius. One can notice
that for some values of Rp and ! the power density wCNCA becomes negative (left
top corner of Fig. 4c).

Figure 5 shows the dependence of the power density wCNCA and of the temperature
Tr on the emittance of the outer surface eext. As expected, the temperature Tr

decreases by increasing eext. But decreasing Tr leads to an increase in the efficiency
(see Fig. 8 of Badescu and Cathcart, 2000) and finally this is associated with an
increase in the power density wCNCA.

Practically, wCNCA and Tr do not depend on the emittance of the inner surface eint.

3.4 The Thrust Force Acting on the Sun

We showed in Section 3.1 that the presence of the mirror makes the Sun’s temper-
ature increase. This has consequences on the radiation impulse and finally on the
thrust force acting on the Sun. In this section one evaluates the thrust force in case
of both class A (Shkadov thruster) and class C stellar engines.
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3.4.1 Class A stellar engine (Shkadov thruster)

The impulse of the radiation per unit time leaving the Sun is proportional to the
energy emitted (see Shkadov, 1987):

(30) p = SS!T 4
S

c
"

By taking into account the Eqs. (5)–(7), (21) and (30) one obtains:

(31) p = L̃S

c

2
1+ cos #

"

Note that in Shkadov (1987) the increase in Sun temperature due to mirror’s
existence is not considered and the following approximate relation is used: p = L̃S/c.

The thrust force f̄ per unit area in the direction of the normal n̄ to an arbitrary
unit area placed on the base surface of the spherical cone A’SB’ of Fig. 1a is (see
also Fig. 1 of Shkadov, 1987):

(32) f = L̃S

c

2
1+ cos #

1
4$R2

p

"

When # = 0, Eq. (32) reduces to Eq. (1) of Shkadov (1987). The correction factor
2/ %1+ cos #& takes into account the increase in Sun’s temperature.

The thrust F being produced by the Sun-mirror system due to the non-symmetric
radiation field is given by Shkadov (1987)

(33) F =
∫

f̄ · n̄' dS(

where S is the base area of the spherical cone A’SB’ in Fig. 1a while ' is the unit
vector along the axis of that cone. After integration one obtains:

(34) F = L̃S

2c
%1− cos #&"

When # = 0, Eq. (34) reduces to Eq. (2) of Shkadov (1987). The thrust force F
increases by increasing the mirror rim angle # , as expected. The original result
is 4cF = L̃S sin2 # (see Eq. 2 of Shkadov, 1987). One can see that our Eq. (34)
generally estimates a higher thrust force, which, in the particular case # = 90",
doubles the result obtained by using Eq. (2) of Shkadov (1987). The main conse-
quence is the fact that the lateral deviation during one orbital period of the Sun,
evaluated by Shkadov (1987) to about 4.4 parsec, is underestimated. The value
estimated by Shkadov (1987) for the acceleration induced by the thrust force F on
the solar system motion is 6"5 · 10−13 m/s2. This is half of the result obtained by
using the improved model from this chapter. Both values have to be compared with
the gravitational acceleration of the galactic field, which is about 1"85 ·10−10 m/s2

(Shkadov, 1987). One concludes that the magnitude of the disturbing force created
by the sun-mirror system is small, as expected.



Stellar Engines 265

3.4.2 Class C stellar engine

The impulse of the radiation emitted by the inner surface of a class C stellar engine
at temperature Tp impinging on the Sun, in case that no mirror exists, is:

(35) pD =
4!R2

Seint"T 4
p

c
#

By using the notations Eqs. (22) and Eqs. (23)-(24) one obtains:

(36) pD = L̃S

c
eint

$4
p

$4
S

#

Consequently, the impulse of the net flux of radiation leaving the Sun is:

(37) pnet = p−pD#

By taking into account the Eqs. (35)–(37) one obtains:

(38) pnet = L̃S

c

(

1− eint

$4
p

$4
S

)
2

1+ cos %
#

The thrust force f per unit area in the direction of the normal n̄ to the base
surface of the circular cone A’SB’ (see Fig 1a) is:

(39) f = L̃S

c

(

1− eint

$4
p

$4
S

)
2

1+ cos %

1
4!R2

p

#

The thrust force F is obtained after computing the integral in Eq. (33):

(40) F = L̃S

2c

(

1− eint

$4
p

$4
S

)

&1− cos %'#

Generally, the thrust force F increases by increasing the mirror rim angle % . One
has to remind, however, that increasing % leads to a decrease in the efficiency (CNCA

(see Fig. 4b). Note that F is dependent on the temperature Tp via the dimensionless
parameter $p. The optimum value of TP which maximizes F is shown in Fig. 4d for
eint = eext = 1. Let us consider an optimum temperature Tp∼300 K (appropriate for
common living conditions on Earth). Then F is a maximum for a radius Rp around
300 millions km.

In the next sections one shall need the thrust force F ′ per unit mass of the solar
system. This implies dividing the Eqs. (34) and (40), respectively, by MS +Mplanets,
where MS = 1#989 · 1030 kg and Mplanets = 2#7 · 1027 kg are Sun mass and the mass
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of Solar System’s planets, respectively. Then, the expressions of F ′ for class A and
class C stellar engines are, respectively:

F ′
A = L̃S

2c

1− cos !

MS +Mplanets

(41)

F ′
C = L̃S

2c

(

1− eint

"4
p

"4
S

)
1− cos !

MS +Mplanets

#(42)

When used in case of the Sun, the Eqs. (41) and (42) lead to (practically) the
same numerical results. This is due to the fact that eint$"p/"S% ∝ $300/5760%4 is
very close to zero. Consequently, the results reported below apply to both types of
stellar engines and the indexes A or C will be removed for convenience.

4. CHANGE OF SUN MOVEMENT IN GALAXY

The Sun’s galactic orbit is described here by ignoring the perturbations due to
Galaxy spiral arms and the encounters with massive dust/molecular clouds. The
gravitational forces acting on the Sun in the absence of a stellar engine are
modeled as being derived from scalar potentials. Various gravitational potentials
were proposed and studied in the relevant literature. It is not our aim to decide
which of these potentials is more appropriate to be used in practice. Here we shall
use the simple spherical potential adopted earlier by Shkadov (1987) (see section
4.1 below). However, some authors consider it to be helpful to decompose the Sun’s
motion into two orthogonal components: a motion in the galactic mid-plane and a
motion perpendicular to the plane (Gonzalez, 1999). Therefore, a cylindrical grav-
itational potential will be used in Section 4.2. It is a generalization of a Plummer
potential, previously used by Carlberg and Innanen (1987). We shall see that both
potentials predict results of the same order of magnitude and this may act as a sort
of cross-checking.

The stellar engine thrust force F is superposed on the Galaxy gravitational forces
acting on the Sun. As a result, a perturbed Sun trajectory will result. It is the scope
of the present section to evaluate the distance between the perturbed position and
the Sun’s usual (average) position.

4.1 Movement in Curvilinear Coordinates

A few results of vector analysis are used here to describe Sun motion. We define
a cartesian system of coordinates

{
xi
}

$i = 1& 2& 3% with the plane Ox1x2 in the
equatorial plane of the Galaxy. The Sun movement in the Galaxy will be given by
three parametric functions, say xi = xi $t% $i = 1& 2& 3%. A curvilinear coordination
system qi $i = 1& 2& 3% is then introduced. The transformation

{
xi
}

→
{
qi
}

defines a
metric tensor gij $i& j = 1& 2& 3%. One denotes by q̇i the usual first order time deriva-
tives of the coordinates qi $i = 1& 2& 3%. They are called generalized velocities. Note
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that their dimensions are not necessarily length per time. The connection between
q̇i and the components of Sun’s velocity vi (i.e. the projections on the coordinates
qi !i = 1" 2" 3## are given by the usual relationships (Beju et al., 1976, p 173):

(43) vi = Hiq̇
i !i = 1" 2" 3# "

where Hi are the Lamé coefficients, which can be obtained by (Beju et al., 1976, p 172):

(44) Hi = g1/2
ii !i = 1" 2" 3# $

The contravariant time derivative D/Dt of the generalized velocities q̇i is given
by (Beju et al., 1976, p 183)

(45)
Dq̇i

Dt
= dq̇i

dt
+% i

jkq̇
j q̇k"

where % i
jk are Christoffel coefficients of the second kind. Here the Einstein conven-

tion for summation was used. The equations of movement of the Sun have the
covariant form:

(46) ai = Hi

Dq̇i

Dt
= Gi +F

′i !i = 1" 2" 3# "

where ai is the i-th contravariant component of Sun’s acceleration while Gi and F
′i

are the i-th contravariant components of the gravitational force and of the stellar
engine thrust, respectively, both of them per unit mass of the Solar System.

The Sun motion is described first by mean of the spherical coordinate system
!R"&"'# used in Shkadov (1987). The change of coordinates

(
x1"x2"x3

)
→

!R"&"'# is:

(47) x1 = R cos ' cos & x2 = R cos ' sin & x3 = R sin '"

where 0 ≤ & ≤ 2( and −(/2 ≤ ' ≤ (/2. The equatorial plane of the Galaxy is
associated to ' = 0. Details about the metric tensor gij, the contravariant tensor
gij !i" j = R"&"'#, the Lamé coefficients and the Christoffel symbols of first and
second kind, respectively, may be found in Badescu and Cathcart (2006).

Use of Eqs. (43) allows to obtain the components vi !i = R"&"'# of Sun’s velocity:

(48) vR = Ṙ v& = R cos '&̇ v' = R'̇"

while use of Eqs. (44)–(46) and (48) allow to obtain the components v̇i !R"&"'#
of Sun’s acceleration:

(49)

v̇R =
(
v&
)2 + !v'#2

R
+GR +F

′R

v̇& = −vRv& −v&v' tan '

R
+G& +F

′&

v̇' = −v&v' +
(
v&
)2

tan '

R
+G' +F

′'

$
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The Sun motion is described now by mean of the cylindrical coordinate system
!r" #" z$ used in Carlberg and Innanen (1987). The change of coordinates(
x1"x2"x3

)
→ !r" #" z$ is:

(50) x1 = r cos # x2 = r sin # x3 = z"

where 0 ≤ # ≤ 2%. The equatorial plane of the Galaxy is associated to z = 0. Again,
details about the metric tensor gij, the contravariant tensor gij !i" j = r" #" z$, the
Lamé coefficients and the Christoffel symbols of first and second kind, respectively,
may be found in Badescu and Cathcart (2006).

Use of Eqs. (43) allows to obtain the components vi !i = r" #" z$ of Sun’s velocity:

(51) vr = ṙ v# = r#̇ vz = ż"

while use of Eqs. (44)–(46) and (51) allow to obtain the components v̇i !r" #" z$ of
Sun’s acceleration:

(52)
v̇r =

(
v#
)2

r
+Gr +F

′r

v̇# = −vrv#

r
+G# +F

′#

v̇z = Gz +F
′z

&

The above theory will be used now in case of two Galaxy gravitational potentials.

4.2 First Galaxy Gravitational Potential

As a first axi-symmetrical gravitational potential per unit mass of the solar system,
' !R"(")$, we shall adopt:

(53) ' !R"(")$ = A

B+ !B2 +R2$1/2 − C2 tan2 !)/2$

R2 !1+D2 tan2 !)/2$$1/2 &

Here a spherical system of coordinates !R"(")$ was used. The constants in Eq. (53)
are as follows: A = 3&18 ·1022 km3/s2, B = 8&6 ·1016 km, C = 3&27 ·1020 km2/s and
D = 30&8 (Shkadov, 1987).

The components of the gradient of ' are projections of the gravitational accel-
eration vector G:

(54) GR = 1
HR

*'

*R
G( = 1

H(

*'

*(
= 0 G) = 1

H)

*'

*)
&

Here the Lamé coefficients Hi !i = R"(")$ were used.
One denotes the components of Sun’s velocity by vi !i = R"(")$ and one defines

the following dimensionless variables:

(55) t̃ ≡ t

T0
R̃ ≡ R

r0
ṽR ≡ vR

v0
ṽ( ≡ v(

v0
ṽ) ≡ v)

v0
"
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where T0

(
= 220 ·106 yr

)
, r0 != 8500 pc" and v0 != 12 km/s" are appropriate

scaling values.
In the dimensionless notation Eq. (55), the Eqs.(48) and (49) describing the Sun

movement are:

(56a-e)

˙̃R= ṽR #̇ = ṽ#

R̃ cos $
#̇ = ṽ#

R̃ cos $

˙̃vR = D̃1

(
ṽ#
)2 + !ṽ$"2

R̃
− D̃2a

R̃
(
B̃2 + R̃2

)1/2
[
B̃2 +

(
B̃2 + R̃2

)1/2
]2

+D̃2b

2 tan2 !$/2"

R̃
3
!1+D2 tan2 !$/2""1/2

+fRD̃3

ṽ# =−D̃1
ṽRṽ# − ṽ#ṽ$ tan $

R̃
+f #D̃3

˙̃v$ =−D̃1

ṽ#ṽ$ +
(
ṽ#
)2

tan $

R̃

−D̃2b

1+ D2

2 tan2 !$/2"

R̃3 !1+D2 tan2 !$/2""1/2

tan2 !$/2"

cos2 !$/2"
+f$D̃3%

Here the Eqs. (42) and (30) and the dimensionless parameters defined below were
also used:

(57)
B̃ ≡ B

r0
D̃1 ≡ v0T0

r0
D̃2a ≡ T0A

v0r
2
0

D̃2b ≡ T0C
2

v0r
3
0

D̃3 ≡ T0

v0

Ls

2c

1− cos &

Msun +Mplanets

!1− eint
'4

p

'4
s
"

%

In Eqs. (56) the unit vector
(
fR(f #(f$

)
gives the direction of the thrust force per

unit mass F ′ (see Eq. 42) in the coordinate system !R(#($".
A simplifying hypothesis was adopted in Shkadov (1987) to allow an analytical

solution for the perturbed motion of the Sun. Thus, one considered a particular
set of initial conditions that makes the usual (unperturbed) motion of the Sun to
be along a circular orbit in the equatorial plane $ = 0 of the Galaxy. One proved
that the ratio of the maximum acceleration generated by the Sun-mirror system
to the Galaxy gravitational acceleration is less than one percent. One concluded
that the magnitude of the thrust force is (relatively) small and the small parameter
method can be used to solve the equations of the perturbed motion. Consequently,
the perturbed motion of the Sun was described mathematically in Shkadov (1987)
as a variational problem with respect to the unperturbed (circular) orbit.



270 V. Badescu and R.B. Cathcart

In this chapter the Eqs. (56) are solved numerically by using the ODE-solver
SDRIV3 from the SLATEC library (Fong et al., 1993).

A few details about the initial values used to solve the Eqs. (56) follow. The
(absolute) Sun velocity is usually obtained by adding the (average) near circular
velocity of the Galaxy at the Sun to the Sun’s velocity in the local standard of rest
(LSR). Discussions on various ways of defining the LSR can be found in (Bash,
1986, p. 42). One knows that the Sun is located near the corotation circle, where
in a spiral galaxy such as ours the angular speeds of the spiral pattern and the
stars are equal (Mishunov and Zenina, 1999). Consequently, one expects a rather
small value for Sun’s velocity in the LSR. Indeed, HIPPARCOS-based studies give
the mean value 13!4 ± 0!4 km/s (Dehnen and Binney, 1998; Kovalevsky, 1999;
Bienayme, 1999). The LSR velocity is higher for older than for younger stars due
to accumulation of perturbations to a star’s trajectory. Consequently, the present-
day orbit differs from the originally nearly circular motion in plane (Gonzalez,
1999). One defines the Sun’s velocity components "u#v#w$ in the LSR as follow:
u is the velocity positive outward away from the galactic center; v is the velocity
in the galactic plane positive in the sense of the galactic rotation and w is the
velocity in the direction perpendicular on the galactic plane, positive toward the
north galactic pole (Bash, 1986, p. 36). In this convention "u#v#w$ = "0# 0# 0$
characterizes a body at Sun position, moving in the galactic plane on a circular
orbit. The initial components of LSR Sun velocity are denoted "u0#v0#w0$. In
computation we used the rather popular values (in km/s):"u0#v0#w0$ = "−9# 12# 7$
(Bash, 1986, p. 36; Darling, 2004). The local components "U#V#W $ of Galaxy’s
velocity are defined in a similar coordinate system, with the origin in the center of
the Galaxy. One denotes by "U0#V0#W0$ the Galaxy’s velocity at Sun position. In
computations we used the values (in km/s): "U0#V0#W0$ = "44# 235# 30$ (Carlberg
and Innanen, 1987). Therefore, the components of the initial (absolute) Sun velocity
are: vR "t = 0$ = u0 +U0, v% "t = 0$ = v0 +V0 and v& "t = 0$ = w0 +W0.

Note that the estimated Sun orbit is rather sensitive on the initial velocity. For
example, in Bash (1986) the chosen values of both u0 and v0 were increased by
3 km/s and the orbit was integrated again. After 100 Myr the Sun’s position was
found to differ by 400 pc.

The initial coordinates of the Sun are as follows. At time t = 0 the Sun is found in
the equatorial plane of the Galaxy. We thus have &"t = 0$ = 0. This is reasonable
as the Sun crosses the equatorial plane during its movement in the Galaxy (see
e.g. Fig. 6a). Note that the present-day position of the Sun is estimated to about 10
to 20 pc above the equator plane (Pal and Ureche, 1983; Gonzalez, 1999), which
is rather close to it. Other initial conditions are %"t = 0$ = 0 and R "t = 0$ = r0

(Carlberg and Innanen, 1987).
It is useful now to estimate how long one can safely integrate the Sun orbit.

Indeed, the velocity dispersion of the Galaxy’s disk stars increases with time, due
to rather random encounters with interstellar clouds and periodical encounters with
the spiral arms of stars. For example, during its lifetime the Sun has crossed the
Galaxy’s spiral arms about 17 times (Bash, 1986, p. 42). It may not be wise to
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integrate the Sun’s orbit, using a global potential, past one spiral arm’s passage.
Therefore, the time between spiral arm passages, which is about 260 Myr, is the
maximum integration time accepted here.

First, the Eqs. (33) were solved in the case fR = f ! = f" = 0. This corresponds
to the usual (unperturbed) motion of the Sun. Using the solution of Eqs. (33) one
could obtain from Eqs. (47) the cartesian coordinates xi #t$ #i = 1% 2% 3$ of the Sun
on the unperturbed orbit. Second, the Eqs. (56) were solved in case the Sun motion
is perturbed by the stellar engine thrust force. This requires of course using a non-
null unit vector

(
fR%f !%f"

)
in Eqs. (56). The cartesian coordinates of the Sun on

the perturbed orbit are denoted xi
p #t$ #i = 1% 2% 3$.

Since the local force law is not inverse-square, the galactic orbit of the Sun is not
expected to be a close Keplerian ellipse. The best-fitting, approximate, Keplerian
ellipse to the Sun’s current orbit shows a ≈ 1&07r0 and e ≈ 0&07, where a and e
are the semi-major axis and the eccentricity of the orbit, respectively (Bash, 1986,
p. 42). There is a reasonable concordance between these previous findings and
the results obtained here (see Fig. 6a). The coordinate R lies between 0&903r0 and
1&136r0. A complete rotation of the Sun around the center of the Galaxy corresponds
to a variation of ! between 0 and 360 degrees. It takes about 225 Myr. The Sun
trajectory is placed both above and below the equatorial plane of the Galaxy (i.e. at
positive and negative " values, respectively) (Fig. 6a). The angular deviation from
the equatorial plane is, however, small in absolute values (less than 5 degrees). The
Sun trajectory crosses the equatorial plane two times during a complete rotation.
One reminds that the simplified unperturbed Sun motion studied in Shkadov (1987)
is confined to the equatorial plane of the Galaxy. A periodic oscillation motion in
the lateral direction to the solar orbital plane was emphasized in the quoted paper
only in case the Sun motion is perturbed by the mirror’s thrust force.

Sun velocity changes on the unperturbed orbit (Fig. 6b). The tangential velocity
v! has a monotonous time variation between apogalacticon and perigalacticon. The

Figure 6. Solution of Eqs. (33) for one Sun revolution. (a) Dependence of angles ! and " on R. (b)
Dependence of Sun velocity components vR%v! and v" on R
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radial velocity vR reaches its extreme values near R = r0. The time variation of v!

is slightly more complicated.
A stellar engine thrust force of constant magnitude will be considered in the

following. The perturbed motion of the Sun depends, of course, on the direction of
the thrust force. Three simple strategies of changing Sun movement are defined now.
In the first case the thrust force is constantly acting on the (outward) direction of
R and it corresponds to fR = 1" f # = f! = 0 in Eqs. (56). The second case corre-
sponds to f! = 1" fR = f # = 0 and refers to a thrust force constantly acting on
the direction of the generalized variable !. A thrust force constantly acting on the
direction of the generalized variable # (i.e.f # = 1" fR = f! = 0$ is the third strategy.

In all the three above cases the time-dependent distance %R &t$ between the
perturbed and unperturbed positions of the Sun, respectively, is defined in the usual
way as

(58) %R &t$ ≡
[(

x1
p −x1

)2 +
(
x2

p −x2
)2 +

(
x3

p −x3
)2
]1/2

'

The time dependence of %R is shown in Fig. 7 for the three strategies. A single
rotation of the Sun around the center of the Galaxy was considered. The distance %R
depends on the direction of the thrust force (i.e. on the strategy), as expected. None
of the three strategies make the distance between the perturbed and the unperturbed
Sun position increase linearly in time. An optimal control strategy for the thrust
force direction is required for this purpose. The second strategy (i.e. f # = 1$ yields
the largest values of %R during the time interval considered here. The deviation
from the unperturbed orbit could be as large as 40 pc. Note the maximum %R is
obtained with the fR = 1 strategy about 140 Myr after stellar engine implementation.

Figure 7. Time variation of distance %R &t$ between the perturbed and unperturbed positions of the Sun,
respectively, during one Sun galactic revolution. Solutions of Eqs. (56) were used. Three strategies of
changing Sun movement are considered: (i) fR = 1 (stellar engine thrust force is acting on the (outward)
direction of R), (ii) f# = 1 (thrust force acting on the direction of #$, (iii) f! = 1 (thrust force acting
on the direction of !$
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It is interesting to compare our findings with early results obtained in Shkadov
(1987) by using a simplified analytical model. In the quoted paper the mirror axis
forms a right angle with the radius-vector of the Sun that is assumed to move on
a circular orbit in the equatorial plane of the Galaxy. This means that the thrust
vector is always acting in the equatorial plane of the Galaxy and it is directed along
the tangent to the solar orbit. In Shkadov (1987) the radius of the circular orbit of
the Sun is estimated to 10 kpc while the period of one Sun revolution in the Galaxy
is assumed to be 200 Myr. The quoted author found a Sun radial deviation from its
orbit of about 12 pc. This is about three times smaller than the results obtained in
this chapter by using a more accurate treatment.

4.3 Second Galaxy Gravitational Potential

Another axi-symmetric gravitational potential per unit mass of the solar system,
! "r# $# z%, will be used in this section. It consists of a disk-halo Plummer potential
supplemented with some spherical potentials (see Carlberg and Innanen, 1987):

(59)

! "r# $# z% =
− &1Meff g
{[

a+
3∑

i=1
'i

(
z2 +h2

i

)1/2
]2

+b2
1 + r2

}1/2 −
4∑

j=2

&jMeff g
(
b2

j + r2
)1/2 (

Here a cylindrical system of coordinates "r# $# z% was used. Other notations in Eq. (59)
are: g

(
= 6(67 ·10−11m3kg−1s−2

)
is the gravitational constant, Meff = 9(484 ·1011MS

is the effective Galaxy mass influencing Sun’s movement, &j "j = 1# 2# 3# 4% are mass
weighting coefficients for various potential components, a and b1 are the scale length
and the core radius of the disk-halo, respectively, 'i "i = 1# 2# 3% and hi "i = 1# 2# 3%
correspond to the scale heights of various disk-halo components while bj "j = 2# 3# 4%
are the core radii of the additional spherical potentials (for bulge, nucleus and dark
halo, respectively). Table 1 shows the data.

Table 1. Data for the Galaxy gravitational potential of (Carlberg and Innanen, 1987)

Component
j

Disk-halo
"j = 1%

Bulge
"j = 2%

Nucleus
"j = 3%

Dark-halo
"j = 4%

&j 0.1554 0.0490 0.0098 0.7859
bj (kpc) 8.0 3.0 0.25 35.0
a (kpc) 3.0 0 0 0
'1 0.4 0 0 0
'2 0.5 0 0 0
'3 0.1 0 0 0
h1 (kpc) 0.325 0 0 0
h2 (kpc) 0.090 0 0 0
h3 (kpc) 0.125 0 0 0
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The components of the gradient of ! in the coordinate system "r# $# z% are defined
as projections of the gravitational acceleration vector G:

(60) Gr = 1
Hr

&!

&r
# G$ = 1

H$

&!

&$
= 0# Gz = 1

Hz

&!

&z
'

The Lamé coefficients Hi "i = r# $# z% are used here. One denotes the compo-
nents of Sun’s velocity by vi "i = R#(#)% and one defines the new dimensionless
variables:

(61) r̃ ≡ r

r0
ṽr ≡ vr

v0
ṽ$ ≡ v$

v0
ṽz ≡ vz

v0
'

In the dimensionless notation Eqs. (61), the Eqs. (51)-(52) of Sun movement are:

˙̃r = D̃1ṽ
r $̇ = D̃1

ṽ$

r̃
˙̃z = D̃1ṽ

z(62a-c)

˙̃vr = D̃1

(
ṽ$
)2

r̃
(62d)

+ D̃4

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

*1r̃{[
ã+

3∑
i=1

+i

(
z̃2 + h̃2

i

)1/2
]2

+ b̃2
1 + r̃2

}3/2 +
4∑

j=2

*j r̃
(
b̃2

j + r̃2
)3/2

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+f rD̃3

˙̃v$ = −D̃1
ṽr ṽ$

r̃
+f $D̃3(62e)

˙̃vz = D̃4

*1z̃

[
ã+

3∑
i=1

+i

(
z̃2 + h̃2

i

)1/2
]

{[
ã+

3∑
i=1

+i

(
z̃2 + h̃2

i

)1/2
]2

+ b̃2
1 + r̃2

}3/2

⎡

⎢⎣
3∑

i=1
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Here the Eqs. (42) and (59) and following dimensionless constants were also used:

(63) ã ≡ a

r0
# b̃1 ≡ b1

r0
# h̃i ≡ hi

r0
"i = 1# 2# 3% # D̃4 ≡ T0Meff g

v0r
2
0

'

In Eqs. (62) the unit vector
(
f r#f $#f z

)
gives the direction of the thrust force F ′

(see Eq. 42) in the coordinate system "r# $# z%.
The Eqs. (62) are solved numerically by using the ODE-solver SDRIV3 (Fong

et al., 1993). One assumes again that initially (i.e. at time t = 0% the Sun is
found in the equatorial plane of the Galaxy. This makes possible to use the same
initial conditions we used in Section 4.1. In cylindrical coordinates, this means
r "t = 0% = r0, $ "t = 0% = 0 and z "t = 0% = 0. The components of the initial Sun
velocity are: vr "t = 0% = u0 +U0, v$ "t = 0% = v0 +V0 and vz "t = 0% = w0 +W0.
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To solve the unperturbed motion of the Sun requires using f r = f ! = f z = 0 in
Eqs. (62). Results are shown in Fig. 8. The coordinate r lies between 0"942r0 and
1"193r0. This is in reasonably good agreement with results given in Bash (1986),
where an approximate Sun motion confined to the galactic mid-plane was studied.
A perturbation potential due to standard spirals pattern was however included in
that model. The perturbation potential was assumed to be 5% of the global axi-
symmetric potential. The initial values were slightly different from those we used
here. One found that the Sun reaches perigalacticon at r = 0"995r̂0 and apogalacticon
at r = 1"145r̂0, where r̂0 is the initial value of r used in Bash (1986).

A complete rotation of the Sun around the center of the Galaxy (that corresponds
to a variation of ! between 0 and 360 degrees) takes about 248.5 Myr. This is about
10 % longer than in case of the gravitational potential used in section 4.1.

The rotation motion of the Sun is qualitatively similar for both Galaxy grav-
itational potentials we considered in this paper (compare Fig. 8 and Fig. 6,
respectively). Differences exist however in the predictions about the vertical motion.

A usual simplified orbit integration procedure is to separate the motion in the
mid-galactic plane from the Sun’s vertical motion. Sometimes the last motion is
modeled as a simple harmonic oscillation. A vertical oscillation period of 66 Myr
was accepted, for example, in Bash (1986). In this case the Sun would cross the mid-
plane every 33 Myr, i.e. between seven and eight times during a complete revolution.

In the present work there is no decomposition of Sun motion and, therefore,
more accurate results are expected. Figure 8a shows that the Sun deviation from
the equatorial plane of the Galaxy lies between −80 pc and +80 pc and the Sun
trajectory crosses the equatorial plane four times during a complete revolution.

Note that in Gonzalez (1999) one estimates that the Sun spends most of its
time at least 40 pc from the Galactic mid-plane. Also, some studies reported for
the maximum distance zmax between the Sun and Galaxy’s equatorial plane values
ranging from 76.8 to 81.8 pc (Bash, 1986), which is in good concordance with our
results.

Figure 8. Solution of Eqs. (62) for one Sun revolution. (a) Dependence of variables ! and z on r .
(b) Dependence of Sun velocity components vr #v! and vz on r
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Figure 9. Time variation of the distance !R "t# between the perturbed and unperturbed positions of the
Sun, respectively, during one Sun galactic revolution. Solutions of the equations system (62) were used.
Three strategies of changing Sun movement are considered: (i) f r = 1 (stellar engine thrust force is
acting on the (outward) direction of r#, (ii) f $ = 1 (thrust force acting on the direction of the generalized
variable $#, (iii) f z = 1 (thrust force acting on z direction)

The tangential velocity v$ and the radial velocity vr have a monotonous time
variation between their minimum and maximum values but the time variation of vz

is slightly more complicated (Fig. 8b).
Three simple strategies of changing Sun movement are again considered here.

In the first case the stellar engine thrust force is constantly acting on the (outward)
direction of r and it corresponds to f r = 1% f $ = f z = 0 in Eqs. (62). The second
case corresponds to f $ = 1% f r = f z = 0 and refers to a thrust force constantly
acting on the direction of the generalized variable $. A thrust force acting on z
direction (i.e. f z = 1% f r = f $ = 0) is the third strategy.

The time-dependent distance !R "t# between the perturbed and unperturbed posi-
tions of the Sun is defined by Eq. (58).

Figure 9 shows the time dependence of !R during one Sun revolution for the three
strategies defined above. The second strategy (i.e. f $ = 1) yields the largest values
of !R. The maximum deviation from the unperturbed orbit is about 35 pc. This is
in good agreement with the result obtained by using the gravitational potential of
section 4.1 (compare Fig. 9 and Fig. 7, respectively).

5. CONCLUSIONS

A stellar engine is defined in this chapter as a device that uses an important part
of star resources to produce work. A classification is proposed as follows. A class
A stellar engine uses the impulse of the radiation emitted by a star to produce a
thrust force. When acting on a finite distance the thrust force generates work. Class
A stellar engines can be used for interstellar travel. As example we quote the Sun
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thruster proposed by Shkadov (1987). A class B stellar engine uses the energy of
the radiation emitted by a star to generate mechanical power. It is based on the
concept of the Dyson sphere (DS). As example we cite the stellar engine proposed
in Badescu (1995). A class C stellar engine is a combination between class A and
class B stellar engines and provides a Kardashev type II civilisation with both
power and the possibility of interstellar travel.

A class A stellar engine is associated with an increase in the affected star’s
photosphere temperature. For instance, by increasing the mirror’s rim angle from 0
to 90 degrees the spectral class of the Sun changes from G2 towards F2. However,
a reasonable rim angle value (! = 30!" keeps the photosphere temperature (and its
associated spectral class) quite close to the present-day values.

A number of conclusions may be drawn regarding the manufacturing of a class
B stellar engine in our solar system. First, small radii increase the feasibility of
the project as the amount of material required is proportional to the square of the
radius. Second, the inner planets seem to be the best source of material because of
the shorter distance between their orbit and the place of the future construction.

The efficiency of a class C stellar engine increases by increasing its radius and
decreasing the mirror rim angle ! . There is a minimum radius for such engine to
provide useful power. The important fact is that there is an optimum stellar engine
radius as far as the provided power density is concerned. For values adopted here
this optimum radius is around 450 millions km (see Fig. 4c).

The mirror of class A and class C stellar engines makes the Sun’s temperature
increase and this has consequences on the thrust force acting on the Sun. In both
cases the thrust force F increases by increasing the mirror rim angle ! , as expected.
The thrust force of the class A stellar engine is, however, larger than first esti-
mated by Shkadov (1987) without taking into account the increase in the Sun’s
temperature.

Changing into a controllable way the trajectory of the Sun in the Galaxy is of
great potential interest for humanity. In this chapter we have studied in some detail
how class A or class C stellar engines could be used for this purpose. One has
proved in Section 3.4 that both types of stellar engines provide practically the same
thrust force when used to change Sun orbit.

A simple dynamic model for Sun motion in the Galaxy was developed in Section
4. It takes into account the (perturbation) thrust force provided by the stellar engine,
which is superposed on the usual gravitational forces. The model allowed us to
evaluate the distance between the perturbed position of the Sun and the usual
Sun position. To increase confidence in results two different Galaxy gravitational
potential models were used in calculations. In both cases, the results obtained show
similar qualitative features for Sun’s unperturbed motion.

Three simple strategies of changing Sun orbit were considered. A constant module
thrust force was always assumed and the difference consisted in the force direction.
None of these strategies make the distance between the perturbed and the unper-
turbed Sun position increase linearly in time. For this purpose an optimal control
strategy is to be used.



278 V. Badescu and R.B. Cathcart

For a single Sun revolution the maximum estimated deviation is between 35 and
40 pc (depending on the gravitational potential involved). Both Fig. 7 and Fig. 9
show that the stellar engine gives a 10 pc deviation of the Sun in less than 150 Myr.
The number density of stars in the solar neighborhood is about 0.104 per cubic
pc and so within a 10 pc radius sphere we would find around 400 stars, about 10
of which would be single solar-type stars (see e.g. (Fogg, 1995, p. 461)). This
gives some perspective to future interstellar transfer macro-projects. The duration
involved is, however, large and other kinds of stellar engines than those we studied
must also be considered. One concludes that class A or class C stellar engines may
be used to control in a certain extent the Sun’s movement in the Galaxy.
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